Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices

نویسنده

  • Jaehyun Park
چکیده

We consider the problem of writing an arbitrary symmetric matrix as the difference of two positive semidefinite matrices. We start with simple ideas such as eigenvalue decomposition. Then, we develop a simple adaptation of the Cholesky that returns a difference-of-Cholesky representation of indefinite matrices. Heuristics that promote sparsity can be applied directly to this modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Preserving Positivity for Matrices with Sparsity Constraints

Functions preserving Loewner positivity when applied entrywise to positive semidefinite matrices have been widely studied in the literature. Following the work of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J. 26], and others, it is well-known that functions preserving positivity for matrices of all dimensions are absolutely monotonic (i.e., analytic with nonnegative Taylor coefficients). I...

متن کامل

Restoring Definiteness via Shrinking, with an Application to Correlation Matrices with a Fixed Block

Indefinite approximations of positive semidefinite matrices arise in many data analysis applications involving covariance matrices and correlation matrices. We propose a method for restoring positive semidefiniteness of an indefinite matrix M0 that constructs a convex linear combination S(α) = αM1 + (1− α)M0 of M0 and a positive semidefinite target matrix M1. In statistics, this construction fo...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.06762  شماره 

صفحات  -

تاریخ انتشار 2016